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RECURRENT ESTIMATION AND IDENTIFICATION OF THE PARAMETERS 

IN NON-LINEAR DETERMINISTIC SYSTEMS* 

G.N. MIL'SHTEIN and O.E. SOLOVtYBVA 

Estimation of the phase states and parameters of non-linear 
deterministic systems of differential equations is reduced to the 
determination of initial data which minimize a certain functional which 
depends on observations and prior information. Equations are derived 
for an optimum non-linear filter whose realization demands repeated 
integration of auxiliarysystems of differential equations. A modified, 
simpler filter, which is nearly optimum in many quite typical 
situations, is constructed. Consideration is given to the problem of 
estimation based on partly-known initial data, a special case of which 
is identifying the parameters of a system whose phase states are known 
at the initial time. In the linear case, if there is no a priori 
information, the results obtained here represent a deterministic version 
of Kalman filtering. The most constructive results in estimation have 
been obtained fox linear systems (for general approaches see /l/, for 
recurrent filtration given known a priori information of a statistical 
nature about the initial data and noise in the object and in the 
observations, see /2/, for a deterministic version of recurrent 
estimation along game-theoretic lines, assuming known restrictions on 
noise, see /3/, and for a deterministic version of Kalman filtering see 
/4, 511. 

1. Statement of the probkm. We shall consider questions relating to the estimation 
of non-linear systems of ordinary differential equations 

X' = j (s, X), s > t, (i,j) 

with observations 

Y (s) 2 rp (s, X (s)), s > t, (1.2) 

The prime denotes differentiation with respect to s,X,y are column vectors with n and 
m components, respectively, the approximate equality in (1.2) indicates that the observations 
involve an unknown degree of noise. 

The identification of a parameter A (where A is an Z-vector) in the system 

X' = j&X, A) (1.3) 

given observations (1.2) and taking into account the relations 

K=O (1.4) 
obviously reduces to estimating the phase variables in system (1.31, (1.4) given observations 
(1.2) (the function 'p in (1.2) may then depend on the parameter A: cp = 'p (s, X (s), A)). 

?kPrikZ.Matem.Mekkan.,55,1,39-47,199i 



30 

It is assumed that f (s, X, A) and 'p(s,z,li) are such that all subsequent operations that 
use the continued existence in time of the solutions of the systems of differential equations 
and the differentiability of these solutions with respect to the initial data and parameters 
are admissible. These conditions are satisfied, e.g., by imposing certain smoothness con- 
ditions on f and cp and restricting the growth of f. 

Define the following functional J(X’(.)) along the solutions of system (1.1): 

J=alX(t&&!g(s,X(s))ds, a $> 0 (1.5) 
f. 

where X is a known vector and g is a function depending in a known way on the observations 
(1.2), e.g., g (s, 4 = I Y (4 - q (s, x)1”. 

Since the solution X(s;+,x) of system (1.1) is uniquely defined by the initial data 

x (6) = x (1.6) 

for any 6.a t,, the functional J may be treated as a function, which we denote by J (t; 6, 5). 
An estimator of the state X(e) (of the parameter A), 6 > t,, based on observations 

over the interval [t,,tl will be denoted by X& (h&t). We shall try to determine it from the 
condition that J(t;ti,x) be minimized as a function of 2. 

Clearly, 
J (t; s, x (s; 6, x)) = J (t; 6, 5) 

Hence the equality 

4t -= x (s; 87 +&I) (1.7) 

holds, thanks to which we may restrict ourselves to looking for an estimator X&t which is 
a solution of the minimization problem 

~(t;~)~l(t;t~,~)=a~r-r~a+~~(s.X(s;t,.r))ds~~nin 
s 0 

(1.8) 

Our immediate goal is to derive differential equations for x*$t. 

2. Derivation of the equations of a non-linear filter. The case a>O. If t = t,, the 
minimum in (1.8) is reached at z =Z. Therefore z& = 5. If t>t,. we look for x in (1.8) 
by considering the equivalent problem of minimizing the functional (1.5) along solutions of 
system (1.1). This is Bolza's problem, and the necessary conditions for a solution may be 
obtained by using Lagrange multipliers /6/. It can be proved that the Lagrange multiplier 
of the integrand in (1.5) does not vanish and may therefore be equated to unity. The final 
form of the Euler-Lagrange equations in problem (1.5), (1.1) is 

X’ = f (s, X), p’ = g, (s, X) - fxT (s, X)P 

p (to) = 2a (X (to) - 2), P (t) = 0 

(2.1) 

(2.2) 

We have used the following notation: Let y(r) be a scalar and 
Yk (4F a column vector depending on the m variables x=(51, . .( c&J. 

y (3 = (Yr_(& Yz (49 . ‘7 
Then 

ay al aYl 
ar, az ... z- 

y__& . . . , y,& ..: .,. ..‘: 
ay ah aYk 

z- ar ... 
m I q 

Clearly, a solution of the boundary-value problem (2.1), (2.2) will exist if problem 
(1.5), (1.1) or, what is the same, problem (1.8), is solvable. If the solution of the bound- 
ary-value problem is moreover unique, it gives an optimal solution, which is determined for 
each t by the initial data: 

X (to) = z&i, p (to) = 2a (z&t - 2) 

As an abbreviation, we let X (s;z), p (s;z) denote the solution of system (2.1) with 
initial values X (to) = 2, p (to) = 2a (x - 5). Then the following equality holds identically with 
respect to t: 

p 0; &,d = 0 (2.3) 
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Hence we obtain the equation of the filter, whose solution is the required estimator: 

d&/dt = - PS’ (t; 4,t, Pr (C 4,d = (2.4) 

- PE’ (t; 4, g, 0, x @; 4,& 4/t. = r 

The matrix px (s; z) is part of the solution of the variational system for (2.1): 

Xc = f* (.% X (s; 3$)X,, x, (t,; 5) = f (2.5) 

Px' = &(s~x(s; r))‘X,- 
I 
*(s,x(s; z)) p (s:.)/ x, -f,*;(s,x (s; r))px: 

Ps v,; 4 = 2aI (2.6) 

The symbol 1 in (2.5), (2.6) denotes the ,n :< n identity matrix, and the 

T 

matrix whose columns are &P, i = 1,2,...,n. 
z 

Clearly, when t is close to t, the matrix pT is invertible. We shall assume henceforth 
that px is invertible at all times under consideration. It follows from (2.6) that 
satisfies the system of equations 

px-' 

P;“.=-p;‘[g,,x,-~~pjx,jp;~-“pI%l (2.7) 

ps-' (1,; r) = ‘l,cC’I 

The right-hand sides of Eq.f2.4) for the estimator &t depend on I&-' (s; x) and X (s; 3). 
which are functions of the n -+ ?i variables S, x. These functions are part of the solution 
of the Cauchy problem (2.3.), (2.5), (2.7) with X(t,) = z, p(t,) = Zafs - T). 

System (2.4) may be solved numerically by using any standard method, e.g., of the Runge- 
Kutta type. However, the specific form of the free terms of these equations involves repeated 
integration of system (2.1), (2.5) and (2.7) over increasingly long time intervals with 
suitable initial data. 

To explain this let us take the Euler method as an example. Let zAlk' be an approximation 

to & WE‘ Then zAfk+lf is found by solving system (2-l), (2.5), (2.7) over the interval ho,tkj 

with the initial data 

x (to) = z/\(k) , p (to) = 2a (dk) - CT) 
x, (to) = I, px-” (to) = ‘!.&I 

As a result one determines the quantities X (tg; %A@)), p;' (tk; .A@)) and 

&@+l) = zAi') - hp,-1 (tk; rArk)) & (ik. x (8~; .Atk’)) 

The case a = 0. The necessary conditions in the problem of minimizing the functional 
(1.5) along solutions of system (1.1) retain the form of the Euler-Lagrange Eqs.(2.1)-(2.2) 
even when a=0 (and then, of course, p(t&=O in (2.2)). Suppose that we have solved 
the boundary-value problem (2.1)-(2.2) at a = 0 and t = tl> to and have thus obtained an 

estimator z&,. Then the behaviour of & when 
(2.4) with initial data x&,. 

t > t, will be described by the filter 

system (2-l), 
Realization of this filter requires repeated integration of 

(2.5) and (2.6f, beginning from time t, (we emphasize: not from time tr). 
Instead of integrating system (2.6) over it,,tl and then inverting the matrix px at time t 
(see (2.4) 1, we may integrate the system over b,,tJ, 
to integrate system (2.7) over k, t1 

invert px at time tr and then proceed 
with initial data 

Comparing the cases 
P,' (t,; r&t). 

a=0 and a> 0, we see that when 
is much easier to solve. 

a> o the estimation problem 
This is due to the presence of the regularizing term ai X-sj*,a)O, 

in the functional that represents the quality of the estimation, which in turn is conditioned 
by the availability of certain a pirori information about the quantities being estimated. The 
term aiz-fi* may sometimes be replaced by other expressions, 
the a priori information, such as 

depending on the nature of 



Clearly, such modifications of the functional (1.5) do not affect the results in any 
essential way. 

3. The problem of estimation t&h partially known initial data. Let us suppose that the 
first k components X,(t,) =,rlr . . ..XI. (to) = Z, of the initial vector X(t,) are known. To 
estimate the remaining n -k components on the basis of the observations (1.2), we consider 
the problem of minimizing the functional 

n--h' 

J == a 2 (X,+i(te)-..Tk+# + &X(S))dS. a>0 (3.1) 
i=, t. 

where .zkL~ (i = 1, 2, . ., n - k) are known numbers. This functional depends on the last n-k 
components of X (to). The minimization problem (3.1), (1.1) with conditions x, (to) = .r,, . . ., 
xh. (to) = Zk may be classified as a Bolza problem /6/ and the corresponding Euler-Lagrange 
equations are again of the form (2.1), but the boundary conditions are different: 

xi (to) = .7,, i = 1, 2, ., k P& (to) = .2a (Xi (to) - 1,) (3.2) 

i = li -; 1, k + 2, ., n; pi (t) = 0, i = 1, 2, . ., n 

The solution of system (2.1) satisfying the initial conditions 

X, (to) = fz, i = 1, 2, . ., k, Xhci (t,,) '= .rk+i 4 &, i = 1, 2, . . ., n - k 

pi (to) = Pi, i = 1, 2, _ .> k, Pk+i (to) = 2cc (zkti - z~+~) k 
201 (E, - Ei), i = 1, 2, . . .( n - k 

is denoted by X (t: j), p (t; x) = p (t; 5, Z), where x = [t, nl, E = (El, . . vI kdT7 n = (PI, . .t Id*. 
The analogue of Eq.(2.3) is the equation 

p (t; E", nA) = p (t; XA) = 0 (3.3) 

Clearly, {z&~}, = zi (i = 1,2,..., k), and E* (t) gives the other n-k coordinates of 

the vector z$. Eq.(3.3) yields a system of differential equations for x* (t) : 

dX*/dt = - px-’ (t; xA2) g, (4 x ct; EA (t))), 

pt (to) == (5, oy = (7k4, . . ., Tn, 0, . . .( oy 

The matrix px. comprises two blocks: px = [P~:P,J, where pc is an n x (n - k) matrix 
and pn is an (n x k) matrix. The matrix pi is part of the solution of the system of dif- 
ferential equations 

&.K(r,-k) 

X,’ = f, (s, x (s; 5)) xg, x, (to) = 
I I 

. . . (3.4) 

I(,,-k)x(n-k) 

Pg’ = g,, (ST x (s; 5)) X& - 
i 

-g 6, x (s; EN P (s; x) X6 - 
I 1 

fzT (Sl x b-i 5)) Pb PE (to) = 
II 

h(n-k) 

2alc,_k)x(“_k) 
I 

(3.5) 

where 0 and I are the zero and identity matrices, respectively, with the appropriate number 
of rows (columns). 

Finally, p,, satisfies the system 

I 
Pn’ = - fzT b-9 x (s; E)) pm pn (to) = I /I o;;;k)xk 

System (3.4) has less dimensions than system (2.5), while the system (3.5)-(3-b) for px 
turns out to be separated from the start, unlike system (2.6) for px; all the somewhat simpli- 
fies the solution of the estimation problem. 

Based on systems (3.5) and (3.6) one can also write down a system of differential 
equations for &. 
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Note that the case a =O carries over in a natural way to the problem considered here. 

& Seeon& version of the fitter eqz&*s. In Sects.2 and 3 the equations of the filter 
were derived from the necessary conditions in Bolza's problem. Necessary conditions of another 
kind may be obtained by directly solving the minimization problem for the function J (G x) 
of (1.8). We have 

J, (.t; x&) h 0 $4.2) 

Hence (to fix our ideas, #e are considering the case a>@, 

the matrix J=(s;x) will be a solution of the equation 

The expression in braces in (4.31 is the matrix constructed from the columns @X,,rla.&?,, 
rt = 1, 2, . . .) n. 

Because of the appearance of the second derivatives with respect to the initial data, 
it is generally much more difficult to realize the filter (4.2) than in the form (2.4). At 
the same time, there are situations in which it is more logical to employ this second version. 
This is precisely what happens in the problem considered in Sect.3 if the number of coordinates 
to be estimated is small. 

Indeed, (3.1) is a function J(t;E), As in (4.21, (4.3), we obtain 

In order to realize the filters in the first version (see Sect.31 it is necessary, 
besides solving the systems of equations in X and Xk, to integrate the systems in p, pr and 
XA> which contain n,n' an& n equations, 
of E; in the second version, 

respectively, and are independent of the dimensionality 
however, we have to integrate systems for 

which all have the same number of equations (n-k)%, the system for J&g, 
dX&*/& (i = 1, n - Jr), 
which has 112 (n - 

k)oln - k + 1) equations, and finally the system for EA, which has n-k equations. Clearly, 
when n-k is not too large the second version is preferable. 

5. Linear fittezhg. In the linear case, Eqs.(l.l), (I.21 and (1.5) have the form 

x' = A (s)X, y (3) 5 C (SfX (s) (5.f) 

J=alX(t,)--.rl2+ {[r,(s)-C(s)X(s)~~ds 
t. 

where A (s) is an n x n matrix and C is an mXn matrix. 
In the case under consideration the filter Eqs.14.21-(4.31 are simplified considerably. 

Indeed, let F (s,z) be a fundamental matrix of solutions of system (5.1). Then F&t,) is a 
solution of system (2.5) and X;r(s:z)= Fr(s,t,). Hence @X,rI& = 0. The matrix J,, (s; 2) 

is independent of 5, because J(s;x) is a quadratric function of x. 
Introducing the notation L(s) = '~,J,(s), we obtain the following equations from (4.21 and 

(4.31: 

(5.2) 

Since .Q k zt:f = F (t, t&&, we use (5.2) to derive a filter which yields an estimator 
for the current state of the system; with the notation M"' (t)= F (t, t&P (t)F* (t, to), this 
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equation is 

dq”/dt = A (t)x,* + W1@)CT (t) (8 (t) - C(t) qA), .ts* = .z 

d&f-l/dt = A (t) W-1 + M-‘A= (t) - h”C’ (1) C(t) &f-l, &f-’ (to) = cc-‘1 

(5.3) 

Eqs.IS.3) are well-known (see, e.g., 14, 5/J for the estimation problem with a =O. In 
this case, of course, the initial conditions at t = to, which figure in (5.3), cannot be 
written down. The equations may be used starting from some time tl> lo, as already discussed 
at the end of Sect.2. 

The filter for estimation based on partly known initial data is also simplified to a 
considerable degree. To obtain the equations, we introduce the following notation. We first 
recall that the last n-k components of the vector X(t,), which have to be determined, 
make up a vector E. Denote the first k (known) components of X(&J by z(1) = (.Zl, z,, . _( ,qy. 
The matrix F (t, ts) is split into two: F (t, t,,)= IF(l) (t, to); Fo) (t, &,)I, where F(r), F(a) are 
nxk and n x (n-k) matrices, respectively. With this notation the equations for E" (t) 
become 

dE”/dt = L;” (t) [F”’ (t, tof CT (t)(y (t) - c (t) F(I) (t, to) w - 

C tt) F (2) (t, to) E”), 5” (to) = E = (rr+l, . . ., Z,,)’ 
(5.4) 

where L,' (G is an [(n -k) X (n - k)l matrix which satisfies the system 

dL,‘/dt = - L;’ [F’*‘(t, to)lT CT (t) C (t) F(*) (t, to) L;’ 
(5.5) 

L;‘(t*) = a-‘l(,-*),(,-a) 

We also have an equation for 5:: 

dx,"/dt = A(t)z.t" -+ F"'(t, to) &‘(t)[F” (t, to)]' ~r(t)(~ (t) -c(t) ~~"1, zl,A = z (5.6) 
If n-k is not too large, the filter (5.5)-(5.6) uses systems of lesser dimensions 

than the filter (5.3). For example, when n-k = 1 Eq.(5.5) is non-dimensional, while 
F(e) (1, to) is a vector found by solving the system determined by the first equation of (5.1). 

6. Elodified filter. In some fairly typical situations, the special form of Eq.(4.3) can 
be used to design-a far simpler filter,-which is close to the optimal filter (4.2): 

Indeed, let X (C 9) be the true solution. A perturbation in the observations 6 (s) = 
y (s) - cp (s, X (s; x0)) is usually a mixture of high-frequency, low-amplitude oscillations. 
Therefore, together with 6 (s), the integrals 

will be small independently of the length t - t, of the interval of integration, provided 
that $ (s) is sufficiently regular. 

Let us assume for simplicity that g = ) y - g, I*. Then g,(s,X(s;x")) 
ties as 6 (s). Assuming that from some time xst 

has the same proper- 
which is a satisfactory estimator for 9, 

we deduce that g,(s,X(s;&~)) also has properties similar to those of S(s). Noting in 
addition that dX,T/&zi (t,; z) = 0 (i = 1,2, . . _, n), so that these matrices are small when t is 
close to t,, we see that the filter (4.21, (4.3) may be replaced by a similar but considerably 
simplified modified filter: 

dr&,/dt = - ‘/$L-l (t; z&/2) X,* (t; z;,t, g, (tv X (t; &,,. &. = z (6.1) 

dL/ds = V2X,T (s; z) g,, (s, X (s; z))X, (s> s)+ 
L jt,; 2) = al 

(6.2) 

It follows from (6.2) that the matrix L is positive definite, and we may therefore except 
the matrix J, (t; z&) to be positive definite too. 

A direct check shows that the function [XxT(~;~)l-l*Jx(~;x) satisfies the second system 
of (2.1) and formula (2.2), and hence 

p (s; z) = [XxT (s; z)l-'Jx (s; 2) (6.3) 

Hence 



35 

(6.4) 

and by (2.3) 

which also follows from a comparison of (2.4) and (4.2). Formula (6.5) yields a factorization 

of PI as a product of a non-singular matrix and a symmetric matrix. Therefore px is invert- 
ible if and only if J,, is invertible. Thus, the heuristic arguments given above, according 
to which J,, should be positive definite, imply that our assumptions in Sect.2 as to px being 
a non-singular matrix were quite justifiable. 

The modified filter in the first version may be obtained as follows. It should be noted 
that since p(t) = 0 the solution of the second system (2.1) can be 
in which the integrand involves g, as a factor, Therefore (see the 
is small and the filter constructed in Sect.2 may be modified: 

It can be verified that 

Q (s; I) = 2 [X,T (s; z)l_‘L (s; 5) 

represented by an integral 
previous arguments) p 

(6.6) 

(6.7) 

(6.8j 

This implies that Q is non-singular and that the modified filters (6.1) and (6.6) deliver 
the same output. Note that if the filters (2.4) and (4.2) are constructed on the additional 
assumption that px and J, are non-singular, then the matrices Q and L in the modified 
filters will always be invertible. 

Analogous reasoning leads to equations of a modified filter in the problem with partly 
known components of the initial state, in both the first and second versions. 

7. Ex5mpte. In connection with Mathieu's equation 
z" + (aa + 0,2 Ccl.9 s) t = 0, 2 (0) = 1, 2' (0) = 0 (7.1) 

with observations 
II (s) L .z (I) (7.2) 

let us consider the identification problem for the parameter h= 41. 
We introduce the notation X,= z, X,- I' and write instead of (7.1), (7.2), 

X,' = X,, x, (0) = 1; X,' = - (h + 0,2 COS a) x,, x, (0) = 0; h' = 0 (7.3) 
with observations 

I (s) L X, (s) (7.4) 
The parameter h will be sought subject to the condition that it minimize the functional 

I = a (a - X)2 + ( (y (s) - X1 (s; A))* ds - mp (7.5) 
0 

Since h is one-dimensional, the second version of the filter is preferable. Eqs.(4.4) 
and (4.5) become 

dhA 

dt (7.6) 

Jhr (s; A) = - 2% 6; a) (6, (s) -x1 (s; h)) + 2 gg(s; q ) 
JM (to; a) = ?.a (7.7) 

In addition to these equations we must of course consider the first two equations of 
system (7.3) and the four equations in the first and second derivatives of X1 and Xp with 
respect to b. Thus, realization of the filter in the second version involves integrating eight 
equations. In the first version, incidentally, it would have been necessary to integrate 
thirteen equations. 

In the modified filter, we replace Eq.(7.7) by 

L' (8; h) = (ax, (3; I)ll)Y L (to; h) = a (7.8) 

The factor 2/Jhl (t; h*) in (7.6) is replaced by i/L (t; h”), and the filter is now realized 
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by means of six equations. 
Testing in a numerical 

h= 1, and the noise in the 
experiment, we took the true value of the parameter a~= h to be 
observations to be S (s)= 6 sin wIs + 6 sin was. The following table 

lists the results of estimating h using an optimal filter for the indicated values of t,z 6, 

qr 02. It is evident that as t increases the estimates improve; at large t they depend only 

slightly on h and a and are largely dependent only on 6 and w,, 0%. The choice of a 
satisfactory value of a in the functional (7.5) depends on t,6 and particularly on the 
proximity of h to the true value of h. 

il 1 a / b / ,=,.r,= lin-;1 / 

0, = 3. 0, = 5 

1.6 0.G 1 0.8 ( 1.6 

0.1 0.870 1.004 0.998 0.619 0.656 1.039 0.81 /I 10-a 1 1 1 ( 1 1 

0.5 1 1.065 ) I.311 ( 1.009 I-0.201 1 -0.371 ) 1.234 

I 10-d I 0.1 1 1.703 ) 1.121 1 1.003 1 0.092 ) ( 0.467 1.024 5.25 

0.5 1 0.543 1 0.112 1 0.995 ) -10.92 l-0.361 ( 1.295 

It may be observed that in this example the modified filter produces an estimate not far 

from that of the optimal filter. 
Numerical experiments have also been carried out with random noise in the observations. 

The results have confirmed the high quality of the filters constructed here. 
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